A short note on the 1st Chern class of a line bundle

Yalong Shi

Abstract

Notes for 2020 BICMR Summer School for Differential Geometry.

1 Review of two definitions

Let *X* be a complex manifold, using the short exact sequence

$$0 \to \underline{\mathbb{Z}} \to \mathscr{O} \xrightarrow{\exp(2\pi\sqrt{-1} \cdot)} \mathscr{O}^* \to 1$$

we get the exact sequence

$$\cdots \to H^1(X, \mathscr{O}^*) \xrightarrow{\delta} H^2(X, \mathbb{Z}) \to \ldots$$

We call $\delta : H^1(X, \mathcal{O}^*) \to H^2(X, \mathbb{Z})$ the "first Chern class" map.

Instead of holomorphic line bundles, we can consider C^{∞} line bundles. These bundles are classified by $H^1(X, \mathcal{E}^*)$. Similarly, we have short exact sequence

$$0 \to \underline{\mathbb{Z}} \to \mathcal{E} \xrightarrow{\exp(2\pi\sqrt{-1}\cdot)} \mathcal{E}^* \to 1,$$

and consequently a short exact sequence:

$$\cdots \to H^1(X, \mathcal{E}) \cdots \to H^1(X, \mathcal{E}^*) \xrightarrow{\delta} H^2(X, \mathbb{Z}) \to H^2(X, \mathcal{E}) \to \dots$$

Since \mathcal{E} is a fine sheaf, we have $H^p(X, \mathcal{E}) = 0$ whenever $p \ge 1$. So $\delta : H^1(X, \mathcal{E}^*) \to H^2(X, \mathbb{Z})$ is an isomorphism (also called "first Chern class map"). This means that *complex line bundles are determined up to* C^{∞} *isomorphisms by their first Chern class.*

On the other hand, we can use a connection on a given C^{∞} complex line bundle *L*, and use the curvature form Θ to define

$$c_1(L) := \left[\frac{\sqrt{-1}}{2\pi}\Theta\right] \in H^2_{dR}(X;\mathbb{R}) \cong H^2(X,\mathbb{R}).$$

2 Relation between these two definitions

Since we have a natural homomorphism $\Phi : H^2(X, \mathbb{Z}) \to H^2(X, \mathbb{R})$ using the sheaf morphism $\underline{\mathbb{Z}} \to \underline{\mathbb{R}}$. We shall explore the relation between $\Phi(\delta([L])) \in H^2(X, \mathbb{R})$ and $c_1(L) \in H^2_{dR}(X, \mathbb{R})$.

For simplicity, in the following we assume L is a holomorphic line bundle with Hermitian metric h. We leave the necessary modification in the general complex line bundle case as an exercise. (hint: you need to replace the Chern connection by any connection on the bundle, use the transformation formula for connection 1-forms when you change a frame.)

First recall the construction of $\delta : H^1(X, \mathcal{O}^*) \to H^2(X, \mathbb{Z})$. Let *L* be a complex line bundle. We use sufficiently fine locally finite trivializations $\mathcal{U} = \{U_\alpha\}_{\alpha \in \Lambda}$ such that each U_α is simply connected and $H^*(X, \mathcal{O}^*)$ is isomorphic to $H^*(\mathcal{U}, \mathcal{O}^*)$. Then $[L] \in H^1(X, \mathcal{O}^*)$ is determined by the Čech cocycle $\{\psi_{\alpha\beta}\}, \psi_{\alpha\beta} \in \mathcal{O}^*(U_\alpha \cap U_\beta)$. We define $\phi_{\alpha\beta} := \frac{1}{2\pi\sqrt{-1}} \log \psi_{\alpha\beta}$. Note that this is not a well-defined Čech cochain: *log* is a multi-valued function!

However, since $\psi_{\alpha\beta}\psi_{\beta\gamma}\psi_{\gamma\alpha} = 1$ on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$, we get

$$z_{\alpha\beta\gamma} := \phi_{\alpha\beta} + \phi_{\beta\gamma} - \phi_{\alpha\gamma} \in \underline{\mathbb{Z}}(U_{\alpha} \cap U_{\beta} \cap U_{\gamma}).$$

This defines a Čech cocycle, whose cohomology class defines $\delta([L])$. Then $\Phi(\delta([L]))$ is also defined by $\{z_{\alpha\beta\gamma}\}$, just viewing \mathbb{Z} as a subsheaf of \mathbb{R} .

To compare it with $c_1(L)$, we need a closer look at the de Rham isomorphism. We first break the resolution

$$0 \to \underline{\mathbb{R}} \to \mathscr{A}^0 \to \mathscr{A}^1 \to \dots$$

into short exact sequences:

$$0 \to \underline{\mathbb{R}} \to \mathscr{A}^0 \to \mathcal{K}_1 \to 0, \quad 0 \to \mathcal{K}_1 \to \mathscr{A}^1 \to \mathcal{K}_2 \to 0, \quad \dots$$

where \mathcal{K}_i is the sheaf of closed *i*-forms. We get exact sequence for cohomology:

$$0 \to H^1(X, \mathcal{K}_1) \to H^2(X, \mathbb{R}) \to 0, \quad A^1(X) \to \mathcal{K}_2(X) \to H^1(X, \mathcal{K}_1) \to 0.$$

The first one gives $\delta_2 : H^1(X, \mathcal{K}_1) \cong H^2(X, \mathbb{R})$ and the second gives $\delta_1 : H^2_{dR}(X) \cong H^1(X, \mathcal{K}_1)$.

First we study δ_1 : Our de Rham class is given by $\frac{\sqrt{-1}}{2\pi}\Theta(h) \in \mathcal{K}_2(X)$. Locally, we have $\Theta = d\theta_{\alpha}$, where $\theta_{\alpha} = \partial \log h_{\alpha}$, $h_{\alpha} = h(e_{\alpha}, e_{\alpha})$, $e_{\alpha}(p) = \varphi_{\alpha}^{-1}(p, 1)$. Then $\delta_1(\left[\frac{\sqrt{-1}}{2\pi}\Theta(h)\right])$ is given by $\left[\left\{\frac{\sqrt{-1}}{2\pi}(\theta_{\beta} - \theta_{\alpha})\right\}\right]$.

Now

$$e_{\beta}(p) = \varphi_{\beta}^{-1}(p,1) = \varphi_{\alpha}^{-1} \circ (\varphi_{\alpha} \circ \varphi_{\beta}^{-1})(p,1) = \varphi_{\alpha}^{-1}(p,\psi_{\alpha\beta}(p)) = \psi_{\alpha\beta}(p)e_{\alpha}(p).$$

So we get $h_{\beta} = h_{\alpha} |\psi_{\alpha\beta}|^2$, and hence $\log h_{\beta} = \log h_{\alpha} + \log |\psi_{\alpha\beta}|^2$. So on $U_{\alpha} \cap U_{\beta}$, we have

$$\frac{\sqrt{-1}}{2\pi}(\theta_{\beta}-\theta_{\alpha})=\frac{\sqrt{-1}}{2\pi}\partial\log|\psi_{\alpha\beta}|^{2}=\frac{\sqrt{-1}}{2\pi}\partial\log\psi_{\alpha\beta}=\frac{\sqrt{-1}}{2\pi}d\log\psi_{\alpha\beta}.$$

Then $\delta_2(\left[\left\{\frac{\sqrt{-1}}{2\pi}(\theta_\beta - \theta_\alpha)\right\}\right])$ is represented by

$$\left\{\frac{\sqrt{-1}}{2\pi}\left(\log\psi_{\beta\gamma}-\log\psi_{\alpha\gamma}+\log\psi_{\alpha\beta}\right)\right\}$$

This is precisely our $\{z_{\alpha\beta\gamma}\}$.

References

- [1] Phillip Griffiths and Joseph Harris, Principles of Algebraic Geometry, John Wiley & Sons, Inc., 1978.
- [2] R.O. Wells, Differential analysis on complex manifolds, 2nd edition, Springer, 1980.